

PII: S0040-4039(97)00351-1

Synthesis of pppA2'p5'A2'p5'A γ-amidates by one pot procedure from A2'p5'A2'p5'A

Ágnes Nyilas^a
Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary

Abstract: One pot synthesis of γ-amidate of pppA2'p5'A2'p5'A described here using phosphoroxychloride and bis-tri-n-butylammonium pyrophosphate for preparing cyclic trimetaphosphate intermediate opening up with n-decylamin. © 1997 Elsevier Science Ltd.

The 5'-phosphorylation of 2',5'A analogues helps them to bind to endoribonuclease¹, but a phosphatase degrades it. Therefore it is important to synthesize phosphatase resistant analogues². Altough ATP γ -derivatives³, and adenosine- $(\beta,\gamma$ -N-methylimido)triphosphate⁴ derivatives are known, few phosphatase-resistant 2',5'A analogues have been synthesized so far. pCH₂ppA2'p5'A2'p5'A⁵, and A5'pppA2'p5'A2'p5'A⁶ were without translational inhibitory activity and lost their ability to activate RNase L. The 5'- γ -phosphorothioate (2'-5')(A)₄, β,γ -difluoromethylene (2'-5')(A)₄ failed to induce an antiviral response after microinjection in HeLa cells⁷. Uronic acid derivatives⁸ were substituted the 5'-terminal adenosine residue of 2',5'A and unable to activate the mouse RNaseL, but could activate human RNaseL at concentration 100-fold greater than that required for the parent 2',5'A.

In our synthetic strategy we prepared 2',5'A with 2-nitrobenzyl (2-NBz)⁹ on 3'-OH, monomethoxytrityl on 5'-OH, benzoyl for exocyclic amino and 2-chlorophenyl for the phosphate protection with phosphotriester method. The partially deprotected, 2-NBz protected 2',5'A was the starting material for the triphosphate synthesis which was carried out, as in earlier publications^{10,11}. The mechanism of triphosphate synthesis gave us the idea for the preparation of γ -amidate, since the cyclic trimetaphosphate can be opened up with different amines (FIG 1).

$$R^{1} \longrightarrow OH \xrightarrow{POCl_{3}} R^{1} \longrightarrow OH \xrightarrow{OH} OH OH OH$$

$$CH_{3}(CH_{2})_{9}NH_{2}$$

$$R^{1} \longrightarrow OH OH OH OH OH$$

The general procedure for the one pot synthesis of γ -amidate is the following: 2-NBz protected 2',5'A (15.3 mg, 10 μ mol) was dried overnight in dessicator and dissolved in 0.5 ml (MeO)₃P=O. After 30 min cooling on ice 31 μ l POCl₃ was added and the reaction mixture was stirred for 3 h at 0 °C. 2 ml Bis-tri-n-butylammonium pyrophosphate and 200 μ l tributylamine was added and the reaction

mixture was poured into 0.1 M triethylammonium bicarbonate (TEAB) and loaded on DEAE Sephadex A25 column which was equilibrated with 0.2 M TEAB in 50 % ethanol. Ethanol was necessary to keep the product soluble on the column. The gradient was 600-600 ml 0.2-0.6 M TEAB. The γ-amidate with 2-NBz protection was eluted between 0.3-0.4 M TEAB. The proper fractions were collected, combined and evaporated, and lyophilised from water. The yield was 75 %, A₂₆₀ units.

The deprotection of 2-NBz has been carried out 4×1 μ mol scale at 360 nm of UV lamp in 60 ml EtOH/H₂O = 1/1 (v/v) for 2 h and the reaction mixture was loaded on DEAE Sephadex A 25 coloumn and eluted with 0.25-0.55 M TEAB. The yield of this step was 75 %, A₂₆₀ units, R_f in n-propanol/NH₄OH/H₂O = 11/7/2 (v/v/v): 0.6; in 1 M NaCl: 0.15. ³¹P-NMR (DMSO-d₆/D₂O = 1/1): -1.3; -1.5 (internucleotide phosphate); -1.8 (γ-P); -11.2 (α -P); -21.2 (β -P).

The γ -amidate was resistant to phosphatase and converted into pppA2'p5'A2'p5'A with 80 % aqueous acetic acid treatment for 2 h.

The n-decyl analogue gives similar rRNA (28S and 18S) degradation to smaller specific cleavage products in interferon-treated HeLa cell extracts - even at concentration of 10⁻⁹M - as the natural compound does¹², showing the RNaseL activating ability of the molecule.

In summary pppA2'p5'A2'p5'A γ-amidate can be synthesized by n-decylamine nucleophile, opening up the cyclic trimetaphosphate of 2',5'A. This reaction demonstrates that the procedure Ludwig¹⁰ originally reported for the synthesis of ATP¹⁰ and later for the synthesis of cordicepin and aracordicepin trimer triphosphates¹¹ can be extended to include a terminal phosphoramidate.

^aPresent address: 6720. Szeged, Tisza L. krt. 18/D., Hungary

REFERENCES:

- 1. Torrence, F.P., Imai, J., Jamoulle, J-C. and Lesiak, K. Chemica Scripta, 26, 191 (1986).
- Bayard, B. Bisbal, C., Silhoe, M., Cnockaert, J., Huez, G. and Lebleu, B. Eur. J. Biochem, 142, 291 (1984).
- 3. Knorre, D.G., Kurbatov, V.A. and Samukov, V.V. FEBS Lett. 70(1), 105 (1976).
- 4. Ma, Q-F., Reynolds, M.A. and Kenyon, G.L. Bioorganic Chemistry, 17, 194 (1989).
- 5. Baglioni, C., D'Alessandro, S.B., Nilsen, T.W., den Hartog, J.A.J, Crea, R. and van Boom, J.H. *J. Biol. Chem*, **256**, 3253, (1981).
- 6. Imai, J. and Torrence, P.F. *Biochemistry*, 23, 766, (1984).
- Bisbal, C., Silhol, M., Lemaitre, M., Bayard, B., Salehzada, T., Lebleu, B., Perreé, T.D. and Blackburn, G.M., Biochemistry, 26, 5172 (1987).
- 8. Kinjo, J.E., Pabucough, A., Alster, D.K., Lesiak, K., Torrence P.F. Drug Des. Disc., 8(3), 241 (1992).
- 9. Ikehara, M., Oshie, K., Hasegawa, A and Ohtsuka, E., Nucleic Acids Res. 9(8), 2003, (1981).
- 10. Ludwig, J., Acta Biochim et Biophys. Acad. Sci Hung 16(3-4), 131 (1981).
- 11. Nyilas, Á., Vrang, L. Drake, A., Öberg, B. and Chattopadhyaya, J. Acta Chem. Scand. B40, 678 (1986).
- 12. Karikó, K. and Ludwig, J. Biochemical and Biophysical Research Communications, 128(2), 695 (1985).